Novosti
< sve vesti
Digitalni blizanci (DB) i personalizovani pristup osobama sa multiplom sklerozom (MS)
13. februar 2023.
Digitalni blizanci (DB): Definicija i opis

Digitalni blizanci (DB) su digitalni modeli objekta ili procesa koji uključuju i ažuriraju sve dostupne podatke u realnom vremenu. Koncept DB je potekao od NASA Apolo programa (1), dok je prvo pominjanje termina „DB“ iz 2003. godine (1,2). Nakon toga DB su bili uvedeni u više oblasti zbog ogromnog potencijala za personalizovanje usluga u online svetu (1). Dostupnost senzora i komunikacionih tehnologija i uspeh tehnologija kao što su mašinsko učenje (MU) i veštačka inteligenicija (VI), razvoj novih hardvera kao i edge računarstvo i cloud su pokrenuli brzi razvoj DB (2). DB su virtuelna reprezentacija koja je u interakciji sa fizičkim objektom i pruža inteligentnu procenu, optimizaciju, predviđanje (3,4). DB se kontinuirano ažuriraju podacima sa senzora skoro u realnom vremenu koji mogu biti dopunjeni podacima sa simulatora pri visokoj prostorno-vremenskoj rezoluciji (2).

DB u medicini

Medicina će imati puno koristi od koncepta DB zbog tehničkih razloga, ograničenosti brzine i složenosti rada ljudskog mozga, spoljašnjih faktora i sve veće potrebe za personalizovanom terapijom. Integracija tehnologije i medicine je glavni pokretač inteligentnog i umreženog zdravlja, ali statistička analiza velikih podataka predstavlja poseban izazov. MU i VI su važne komponente modernih DB u zdravstvu (5). MU se definiše kao „virtuelno ogledalo nas samih koji omogućava da simuliramo našu medicinsku istoriju i zdravstveno stanje koristeći analitičke algoritme” (6). DB koriste indukcioni pristup (statistički modeli koji uče iz podataka) i dedukciju (mehanički modeli koji integrišu znanja i podatke na više nivoa) da bi se obezbedila tačna predviđanja. DB koreliraju ove podatke i koriste algoritme za smislenu i svrsishodnu ugradnju podataka u proces simulacije za definisane kliničke i ekonomske ciljeve. To omogućava brži i isplativiji razvoj nego u realnim uslovima (7), bez ikakvih rizika za pacijenta. Upotreba DB u medicini je još uvek u povoju, trenutno u nekoliko oblasti (kardiologija (8), pulmologija (9), genomska medicina (7), onkologija (10), vaskularna hirurgija (11), gerijatrija (12), demencija (13), neurorehabilitacija (14), precizna nutricija (15), radiologija (16), neurologija (17)).

Digitalni blizanci u multiploj sklerozi (DBMS)

DBMS vrše preciznu fenotipizaciju obradom svih podataka inovativnim alatima i podržavaju kreiranje šablona za odlučivanje zasnovano na izračunatim verovatnoćama. Tako se dobija individualizovana mapa puta koja se sastoji od pregleda, testova i terapije koje treba nastaviti u budućnosti. DBMS kontrolišu i nadgledaju upravljanje bolešću i mogu ispraviti sva odstupanja, te teko predstavljaju i alat za merenje kvaliteta procesa lečenja, i u osnovi poboljšati upravljanje MS.
DBMS i dijagnoza MS: DBMS uključuje strukturirane kliničke i parakliničke podatke. Strukturirani klinički podaci: Kvalitetno uzeti anamnestički podaci, način života, komorbiditeti, psihološki faktori, sociodemografski faktori, podaci dobijeni neurološkim pregledom (uključujući EDSS) su neophodni za kvantitativno merenje stepena poremećaja što utiče na odabir terapije. I drugi klinički instrumenti za kvantifikaciju multidimenzionalnih aspekata MS su u svakodnevnoj upotrtebi (funkcija gornjih ekstremiteta, hod, umor, kognitivne funkcije (17, 18). Podaci iz upitnika popunjenih od strane pacijenata (ishodi (PRO) i iskustva (PRE)) se dobijaju direktno i subjektivno od pacijenata i koriste se za merenje kvaliteta života. Dopunjuju kliničke podatke i upotpunjuju sliku DBMS (17). Paraklinički podaci su od velikog značaja za dijagnozu, fenotipizaciju i praćenje MS: laboratorijski podaci, MS performance test, višedimenzionalna analiza hoda (GAITRite®-Sistem, Mobiliti Lab-Sistem) (18)), Floodlight, i druge (17,19,20).
DBMS i neuroimidžing: Za implementaciju slike u DBMS neophodno je standardizovati MR snimanje (21,22). Trodimenzionalne sekvence čine osnovu za kompjuterski potpomognutu analizu podataka i volumetrijska merenja. Kvantitativna MR će omogućiti detaljnu karakterizaciju moždanog tkiva generisanjem velikog broja numeričkih rezultata (23). Takvim MR podacima može pristupiti samo VI koja je alat DBMS (24). Merenjem i zapremine i dinamike lezija i atrofije mogu se definisati različiti MR fenotipovi pacijenata (25) što bi moglo biti važna komponenta DBMS.
DBMS i “-omičke tehnologije” : Napredne „omičke“ tehnologije (genom, transkriptom, proteom, epigenom, metabolom) omogućavaju da MS da pređe sa „jedne veličine za sve“ ka personalizovanom pristupu. Multi-omičke podatke treba kombinovati kako bi se rasvetlili međusobni odnosi biomolekula. Multi-omika kao inovativni pristup će morati da bude deo DBMS jer može značajno doprineti povećanju znanja o MS (17).
DBMS i terapija MS: Složeni skup faktora koji utiču na odabir DMT (tok bolesti, faktori rizika za ranu progresiju, pacijentov način života i očekivanja (26), klasifikacija bolesti na osnovu biologije, kliničkog fenotipa, i razvoj prediktivnih modela koji uključuju integraciju kliničkih, bioloških i molekularnih kao i markere neuroimidžinga (27-32), stadijum bolesti, stepen invalidnosti, primarna simptomatologija, oblik i dinamika toka bolesti, starost, pol i želja za potomstvom, pridružene bolesti, konkomitantna terapija, kao i individualna životna situacija pacijenta) može biti osnova DBMS koji pokušava da simulira iste ili vrlo slične karakteristike u pogledu zdravstvenog stanja, faktora rizika i razvoja bolesti kao osoba sa MS u stvarnom svetu (33).
DBMS i monitoring MS: Optimalni primarni cilj terapije MS treba biti postizanje odsustva aktivnosti bolesti (no evidence of disease activity-NEDA). Kao što je praćenje MS doživotni izazov za pacijente i zdravstvene radnike, integracija monitoringa u DBMS će biti od velike pomoći (17).
DBMS i brain health: Inicijativa za zdravlje mozga (Brain health) pružila je po prvi put specifično „jezgro“, i vremenski okvir za pojedinačne korake postavljanja dijagnoze, lečenja, i praćenja osoba sa MS (34). Postizanje ovih standarda upravljanja MS-om kod pojedinačnog pacijenta radi povećanja kvaliteta nege će biti olakšano integrišući komponente ovih kliničkih puteva u DBMS (17).
Sa razvojem DBMS moguće je unapređenje inovativnog prikupljanja podataka, poboljšati kliničko donošenje odluka (35,36,37), komunikacije sa pacijentom i zajedničko donošenje odluke, kvaliteta nege, kao i simulacije i predviđanja toka bolesti i ishoda lečenja. Uzimajući u obzir sve pacijentove individualne parametre, potencijalne neželjene efekte, troškove, individualne okolnosti i zadovoljstvo pacijenata, DB mogu predložiti najkorisniju opciju za pacijenta (17).
Još nema razrađenih DB u oblasti MS, ali postoje polazišta i planovi, i budućnost je generisanje i implementacija DB u cilju poboljšanja procesa postavljanja dijagnoze MS, lečenja, određivanja prognoze i poboljšanje komplijanse osoba sa MS (17).
Pre nego što se DBMS mogu koristiti u svakodnevnoj praksi moraju biti potvrđeni od strane studija i real world podataka. Niz izazova koji se moraju prevazići su i obezbeđivanje bezbednosti i tačnosti podataka na kojima se DBMS zasniva. Stoga bi trebalo da buduća istraživanja donesu podatke o tome koji parametri najviše učestvuju u predviđanju, kako se ta predvidljivost može proceniti, i kako ovaj pristup može biti izvodljivo i isplativo integrisan u svakodnevnu zdravstvenu zaštitu. Tokom ovog procesa, zdravstveni radnik treba da proaktivno vodi, nadgleda i prati uvođenje DBMS kao partnera u preciznoj medicini kod osoba sa MS.
Analizirajući sve moguće faktore DBMS će pomoći da se napravi precizna medicina i nega usmerena na stvarnost pacijenta u svakodnevnom životu. Ovo će na kraju poboljšati dijagnostiku, monitoring, terapijske mogućnosti, smanjiti troškove, omogućiti prevenciju i osnažiti pacijente (17).

Reference

1. Tao F, Zhang M, Nee AYC. Chapter 1 - Background and Concept of Digital Twin. In: F Tao, M Zhang and AYC Nee, editors. Digital Twin Driven Smart Manufacturing. London: Academic Press. 2019; p. 3–28.
2. Rasheed A, San O, Kvamsdal T. Digital Twin: Values, Challenges and Enablers From a Modeling Perspective. IEEE Access. 2020; 8:21980–2012.
3. Zheng Y, Yang S, Cheng H. An Application Framework of Digital Twin and its Case Study. J Ambient Intell Humanized Computing. 2019; 10(3):1141– 53.
4. Vrabič R, Erkoyuncu JA, Butala P, Roy R. Digital Twins: Understanding the Added Value of Integrated Models for Through-Life Engineering Services. Proc Manufacturing. 2018; 16:139–46.
5. Winter NR, Hahn T. Big Data, AI and Machine Learning for Precision Psychiatry: How are They Changing the Clinical Practice? Fortschr Der Neurol-Psychiatr. 2020; 88(12):786–93.
6. Alber M, Buganza Tepole A, Cannon WR, De S, Dura-Bernal S, Garikipati K, et al. Integrating Machine Learning and Multiscale Modeling—Perspectives, Challenges, and Opportunities in the Biological, Biomedical, and Behavioral Sciences. NPJ Digit Med. 2019; 2(1):115.
7. Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson M, et al. Digital Twins to Personalize Medicine. Genome Med. 2019; 12 (1):4–19.
8. de Lepper AGW, Buck CMA, van 't Veer M, Huberts W, van de Vosse FN, Dekker LRC. From evidence-based medicine to digital twin technology for predicting ventricular tachycardia in ischaemic cardiomyopathy. J R Soc Interface. 2022; 19(194):20220317.
9. Chakshu NK, Nithiarasu P. An AI based digital-twin for prioritising pneumonia patient treatment. Proc Inst Mech Eng H. 2022; 236(11):1662-74.
10. Baumgartner C. The world's first digital cell twin in cancer electrophysiology: a digital revolution in cancer research? J Exp Clin Cancer Res. 2022; 41(1):298.
11. Lareyre F, Adam C, Carrier M, Raffort J. Using Digital Twins for Precision Medicine in Vascular Surgery. Ann Vasc Surg. 2020; 67:e577-e578.
12. Zhang J, Qian H, Zhou H. [Application and Research of Digital Twin Technology in Safety and Health Monitoring of the Elderly in Community]. Zhongguo Yi Liao Qi Xie Za Zhi. 2019; 43(6):410-13.
13. Wickramasinghe N, Ulapane N, Andargoli A, Ossai C, Shuakat N, Nguyen T, et al. Digital twins to enable better precision and personalized dementia care. JAMIA Open. 2022; 5(3):ooac072.
14. Wang W, He Y, Li F, Li J, Liu J, Wu X. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton. Technol Health Care. 2023; 31(1):103-15.
15. Gkouskou K, Vlastos I, Karkalousos P, Chaniotis D, Sanoudou D, Eliopoulos AG. The "Virtual Digital Twins" Concept in Precision Nutrition. Adv Nutr. 2020; 11(6):1405-13.
16. Pesapane F, Rotili A, Penco S, Nicosia L, Cassano E. Digital Twins in Radiology. J Clin Med. 2022; 11(21):6553.
17. MS Voigt I, Inojosa H, Dillenseger A, Haase R, Akgün K, Ziemssen T. Digital Twins for Multiple Sclerosis. Front Immunol. 2021; 12:669811.
18. Trentzsch K, Weidemann ML, Torp C, Inojosa H, Scholz M, Haase R, et al. The Dresden Protocol for Multidimensional Walking Assessment (DMWA) in Clinical Practice. Front Neurosci. 2020; 14:582046.
19. Marziniak M, Brichetto G, Feys P, Meyding-Lamade U, Vernon K, Meuth SG. The Use of Digital and Remote Communication Technologies as a Tool for Multiple Sclerosis Management: Narrative Review. JMIR Rehabil Assist Technol. 2018; 5(1):e5.
20. Scholz M, Haase R, Schriefer D, Voigt I, Ziemssen T. Electronic Health Interventions in the Case of Multiple Sclerosis: From Theory to Practice. Brain Sci. 2021; 11(2):180.
21. Arevalo O, Riascos R, Rabiei P, Kamali A, Nelson F. Standardizing Magnetic Resonance Imaging Protocols, Requisitions, and Reports in Multiple Sclerosis: An Update for Radiologist Based on 2017 Magnetic Resonance Imaging in Multiple Sclerosis and 2018 Consortium of Multiple Sclerosis Centers Consensus Guidelines. J Comput Assisted Tomography. 2019; 43 (1):1–12.
22. Saslow L, Li DKB, Halper J, Banwell B, Barkhof F, Barlow L, et al. An International Standardized Magnetic Resonance Imaging Protocol for Diagnosis and Follow-up of Patients With Multiple Sclerosis: Advocacy, Dissemination, and Implementation Strategies. Int J MS Care. 2020; 22 (5):226–32.
23. Pessini RA, ACd S, Salmon CEG. Quantitative MRI Data in Multiple Sclerosis Patients: A Pattern Recognition Study. Res Biomed Eng. 2018; 34:138–46.
24. Afzal HMR, Luo S, Ramadan S, Lechner-Scott J. The Emerging Role of Artificial Intelligence in Multiple Sclerosis Imaging. Mult Scler. 2020; 1–10.
25. Tauhid S, Neema M, Healy BC, Weiner HL, Bakshi R. MRI Phenotypes Based on Cerebral Lesions and Atrophy in Patients With Multiple Sclerosis. J Neurol Sci. 2014; 346(1-2):250–4.
26. Brück W, Gold R, Lund BT, Oreja-Guevara C, Prat A, Spencer CM, et al. Therapeutic Decisions in Multiple Sclerosis: Moving Beyond Efficacy. JAMA Neurol. 2013; 70(10):1315–24.
27. Gafson A, Craner MJ, Matthews PM. Personalised Medicine for Multiple Sclerosis Care. Mult Scler. 2017; 23(3):362–9.
28. Chitnis T, Prat A. A Roadmap to Precision Medicine for Multiple Sclerosis. Multiple Sclerosis J. 2020; 26(5):522–32.
29. Bose G, Freedman MS. Precision Medicine in the Multiple Sclerosis Clinic: Selecting the Right Patient for the Right Treatment. Mult Scler. 2020; 26 (5):540–7.
30. Comabella M, Sastre-Garriga J, Montalban X. Precision Medicine in Multiple Sclerosis: Biomarkers for Diagnosis, Prognosis, and Treatment Response. Curr Opin Neurol. 2016; 29(3):254–62.
31. Golan D, Staun-Ram E, Miller A. Shifting Paradigms in Multiple Sclerosis: From Disease-Specific, Through Population-Specific Toward Patient Specific. Curr Opin Neurol. 2016; 29(3):354–61.
32. Pulido-Valdeolivas I, Zubizarreta I, Martinez-Lapiscina EH, Villoslada P. Precision Medicine for Multiple Sclerosis: An Update of the Available Biomarkers and Their Use in Therapeutic Decision Making. Expert Rev Precis Med Drug Dev. 2017; 2(6):345–61.
33. Hansen MR, Okuda DT. Precision Medicine for Multiple Sclerosis Promotes Preventative Medicine. Ann New Y Acad Sci. 2018; 1420(1):62–71.
34. Hobart J, Bowen A, Pepper G, Crofts H, Eberhard L, Berger T, et al. International Consensus on Quality Standards for Brain Health-Focused Care in Multiple Sclerosis. Mult Scler. 2018; 25(13):1809–18.
35. Shortliffe EH, Sepúlveda MJ. Clinical Decision Support in the Era of Artificial Intelligence. Jama. 2018; 320(21):2199–200.
36. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An Overview of Clinical Decision Support Systems: Benefits, Risks, and Strategies for Success. NPJ Digit Med. 2020: 3:17.
37. Alshamrani R, Althbiti A, Alshamrani Y, Alkomah F, Ma X. Model-Driven Decision Making in Multiple Sclerosis Research: Existing Works and Latest Trends. Patterns (N YNY). 2020; 1(8):100121.

Autor teksta: doc. dr Dejan Aleksić
Univerzitetski klinički centar Kragujevac

KONTAKT
HEMOFARM A.D.
Beogradski put bb, 26300 Vršac
+381 13 803 100

Poslovni centar Hemofarm A.D.
Prote Mateje 70, 11000 Beograd
+381 11 381 1200

konektom@hemofarm.com